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‘‘Use it or lose it’’ is a popular adage often associated with use-dependent enhancement of cognitive abil-
ities. Much research has focused on understanding exactly how the brain changes as a function of expe-
rience. Such experience-dependent plasticity involves both structural and functional alterations that
contribute to adaptive behaviors, such as learning and memory, as well as maladaptive behaviors, includ-
ing anxiety disorders, phobias, and posttraumatic stress disorder. With the advancing age of our popula-
tion, understanding how use-dependent plasticity changes across the lifespan may also help to promote
healthy brain aging. A common misconception is that such experience-dependent plasticity (e.g., associa-
tive learning) is synonymous with synaptic plasticity. Other forms of plasticity also play a critical role in
shaping adaptive changes within the nervous system, including intrinsic plasticity – a change in the
intrinsic excitability of a neuron. Intrinsic plasticity can result from a change in the number, distribution
or activity of various ion channels located throughout the neuron. Here, we review evidence that intrinsic
plasticity is an important and evolutionarily conserved neural correlate of learning. Intrinsic plasticity
acts as a metaplasticity mechanism by lowering the threshold for synaptic changes. Thus, learning-
related intrinsic changes can facilitate future synaptic plasticity and learning. Such intrinsic changes
can impact the allocation of a memory trace within a brain structure, and when compromised, can con-
tribute to cognitive decline during the aging process. This unique role of intrinsic excitability can provide
insight into how memories are formed and, more interestingly, how neurons that participate in a mem-
ory trace are selected. Most importantly, modulation of intrinsic excitability can allow for regulation of
learning ability – this can prevent or provide treatment for cognitive decline not only in patients with
clinical disorders but also in the aging population.

� 2013 Elsevier Inc. All rights reserved.
1. Introduction

Neural pathways are plastic and continuously changing in re-
sponse to internal and external stimuli. These changes can occur
at synaptic as well as non-synaptic sites throughout the neuron.
The non-synaptic (intrinsic) plasticity can be described as a change
in the intrinsic excitability of the neuron and is independent of
changes in synaptic transmission. Intrinsic plasticity has been
examined in numerous animal models using a wide variety of
learning paradigms. Many of these changes are learning-specific
and require the same pathways as the substrate of synaptic and
behavioral plasticity. Furthermore, intrinsic changes may impact
future learning, indicating the involvement of a metaplasticity
mechanism. Metaplasticity develops as a result of a series of
time-dependent events. That is, an initial priming event first in-
duces physiological or biochemical changes in neurons or synapses
that can modulate plasticity induced by a subsequent event (e.g.
low- or high-frequency stimulation, or learning, see Abraham &
Bear, 1996). In this review, we will briefly examine several forms
and basic mechanisms involved in intrinsic plasticity, followed
by a discussion of the reciprocal interactions between intrinsic
excitability and memory formation. Special emphasis will be
placed on recent studies that support the role of intrinsic plasticity
in modulation of the strength and allocation of new memories and
how this ability is altered during aging. Evidence from these stud-
ies will be used to establish intrinsic plasticity as a metaplasticity
mechanism that influences memory formation.

1.1. Plasticity: forms and functions

Neural plasticity can serve a multitude of functions (Kim &
Linden, 2007). First, plasticity could be homeostatic in nature,
resulting in restoration of overall firing rates or excitability within
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a network (Turrigiano & Nelson, 2004). Second, it could be mne-
monic, in that it contributes to or forms the basis of the memory
trace or engram (Sigurdsson, Doyere, Cain, & LeDoux, 2007). Third,
it could serve as a metaplasticity mechanism – a higher-order plas-
ticity that affects lower-order synaptic or intrinsic plasticity (Abra-
ham, 2008). Such metaplastic changes could serve to regulate
future experience-dependent plasticity and thus impact behavioral
plasticity.

In addition to serving many functions, neural plasticity can be
achieved in remarkably diverse ways (Marder & Goaillard, 2006).
A considerable proportion of these plastic mechanisms affect
non-synaptic or intrinsic properties of neurons. Intrinsic plasticity
is not only observed following a variety of behavioral paradigms,
but it is phylogenetically conserved (see Section 2), which high-
lights its role in behavioral plasticity. Although synaptic plasticity
has received much attention as a mechanism for memory forma-
tion (Mayford, Siegelbaum, & Kandel, 2012), it has become increas-
ingly clear that an exclusively synaptic model for memory storage
is unlikely and that intrinsic plasticity also plays a critical role in
learning and memory (Frick & Johnston, 2005; Song, Detert, Sehgal,
& Moyer, 2012; Zhang & Linden, 2003).

Intrinsic plasticity can result from changes in the number or
activation of various ion channels. Based on the location of these
ion channels, intrinsic plasticity could be local (i.e., limited to a
small portion of the dendrite) or global (i.e., somatic, including lar-
ger portions of proximal dendrites, thus impacting input from
many synapses). Here we provide a brief description of how plas-
ticity of various intrinsic properties affects flow of information
within a neuron by following the course of synaptic inputs from
the dendrite to the axon terminal.

Intrinsic plasticity (dendritic or somatic) has been linked to
modulation of synaptic plasticity and vice versa. Modulation of
dendritic intrinsic excitability can regulate the throughput of syn-
aptic transmission in various ways (see Fig. 1). First, it can have
consequences for the dendritic integration processes that influence
degradation of synaptic signals (see Fig. 1, Panel 2; also see Spru-
ston, 2008, for an excellent review of how dendritic properties
can affect synaptic integration in pyramidal neurons). For example,
in hippocampal CA1 pyramidal neurons, repetitive firing activates
the slow afterhyperpolarization current (sIAHP, see Section 1.2 for
adescription of the AHP, Hotson & Prince, 1980; Lancaster &
Adams, 1986; Storm, 1989), which hyperpolarizes the somatic
and proximal dendritic membrane potential (Sah & Bekkers,
1996). Interestingly, activation of the sIAHP reduces the amplitude
of EPSPs arising from stimulation of the apical dendritic tree (Sah
& Bekkers, 1996). Furthermore, inhibition of the sIAHP reduces the
threshold for LTP induction in CA1 neurons (Cohen, Coussens, Ray-
mond, & Abraham, 1999; Sah & Bekkers, 1996). Thus, the sIAHP can
act as an adjustable gain control mechanism, influencing the ability
of synaptic signals from dendrites toreach the soma. Similar effects
have been observed in the amygdala as well as the medial prefron-
tal cortex following modulation of the sIAHP (Faber, Delaney, & Sah,
2005; Power, Bocklisch, Curby, & Sah, 2011; Zaitsev & Anwyl,
2012). Thus, intrinsic plasticity can alter the integration of synaptic
inputs, which in turn impacts action potential generation, and neu-
ronal output.

Better transmission of synaptic inputs to the soma is evident as
an enhanced ability of an EPSP to generate an action potential (AP),
referred to as EPSP-to-spike (ES) coupling or ES potentiation (Bliss
& Lomo, 1973). As shown in Fig. 1, Panel 3, ES coupling can undergo
bidirectional plasticity following induction of long-term potentia-
tion or depotentiation (Daoudal, Hanada, & Debanne, 2002). Fur-
thermore, environmental enrichment can also enhance ES
coupling (Malik & Chattarji, 2012). Although ES plasticity can result
from changes in the balance between inhibitory and excitatory
synaptic drive, changes in neuronal intrinsic excitability also
contribute to ES plasticity (see Daoudal & Debanne, 2003, for re-
view). Thus, intrinsic plasticity in the form of changes in the active
properties of dendrites can shape synaptic signals significantly,
and thus impact ES coupling.

Once the synaptic inputs reach the soma, various intrinsic fac-
tors can contribute to AP initiation, including modulation of AP
threshold or local membrane potential. In addition to the all-or-
none firing of an AP, efficient relay of neuronal information may re-
quire repetitive AP firing (see Fig. 1, Panel 4). For example, in work-
ing memory tasks such persistent neuronal firing is critical for
maintaining representations across time, and reduced excitability
in the form of greater spike frequency adaptation may limit work-
ing memory performance (Durstewitz, Seamans, & Sejnowski,
2000).

Single AP characteristics also contribute to neuronal excitability
(see Fig. 1, Panel 5). AP amplitude and half-width are plastic intrin-
sic properties (Varela, Wang, Christianson, Maier, & Cooper, 2012)
that can influence the duration and extent of Ca2+ influx at the pre-
synaptic terminal (Deng et al., 2013). In addition, when a neuron
fires an action potential, the AP can backpropagate into portions
of the dendritic tree, which can be influenced by changes in local
dendritic excitability (see Fig. 1, Panel 6; Frick, Magee, & Johnston,
2004). Such backpropagating APs (bAPs) are associated with Ca2+

influx into the dendritic compartments (Larkum, Zhu, & Sakmann,
1999) and are important for LTP induction (Sjostrom & Hausser,
2006). Moreover, LTP induction enhances local dendritic excitabil-
ity through modulation of A-type K+ channels and results in an in-
put-specific increase in bAP amplitude (Frick et al., 2004). Thus,
APs and bAPs represent yet another example of how intrinsic neu-
ronal excitability is closely associated with synaptic throughput
and plasticity in the brain.

1.2. Mechanisms of intrinsic plasticity: change beyond the synapse

While many neuronal components are involved in intrinsic
plasticity (see Section 1.1), the current review largely focuses on
plasticity of the afterhyperpolarization (AHP) and spike frequency
adaptation (as discussed in Section 2). The AHP is a hyperpolarizing
current that follows a burst of action potentials and limits action
potential firing (Hotson & Prince, 1980). Spike frequency adapta-
tion refers to the process by which the instantaneous firing of a
neuron gradually slows over time in response to sustained excita-
tion (e.g. see Madison & Nicoll, 1984). In CA1 neurons, spike fre-
quency adaptation is heavily influenced by the AHP (although
other currents are also involved). When the AHP is small, spike fre-
quency adaptation is also reduced, meaning that a sustained depo-
larization can now evoke more action potentials.

The AHP is influenced by several underlying currents mediated
by Ca2+-activated K+ channels. There are several phases of the AHP,
including fast, medium, and slow AHP (for an excellent review see
Storm, 1990). These are evoked as a result of action potential-elic-
ited K+ currents, including: (1) a voltage- and Ca2+-dependent cur-
rent (IC); (2) a voltage-dependent, muscarine-sensitive current
(IM); (3) a Ca2+-dependent and apamin-sensitive current (IAHP);
and (4) a Ca2+-dependent apamin-insensitive current sIAHP; Gaspa-
rini & DiFrancesco, 1999; Sah, 1996; Stocker, Krause, & Pedarzani,
1999;Storm, 1989). The fast AHP is modulated by changes in IC; the
medium AHP is modulated by changes in IC, IM, and the apamin-
sensitive IAHP; the slow AHP is modulated by changes in the apam-
in-insensitive sIAHP (Gasparini & DiFrancesco, 1999; Sah, 1996;
Stocker et al., 1999; Storm, 1989). Although learning-related mod-
ulation is possible for all three phases of the AHP (e.g. see Mat-
thews, Linardakis, & Disterhoft, 2009; Matthews, Weible, Shah, &
Disterhoft, 2008; Santini, Quirk, & Porter, 2008 for learning-realted
changes in fast AHP), the current review will focus mostly on
learning-related changes in the slow AHP for two reasons: (1)
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learning-related changes in slow AHP are more extensively de-
scribed, and (2) the authors believe that a description of learn-
ing-related slow AHP changes is adequate to support the central
hypothesis of this review.
2. Intrinsic excitability: a substrate for learning

Learning involves a change in behavior in response to environ-
mental stimuli, and it depends critically on plasticity within the
nervous system. Learning-related changes include modulation of
synaptic and non-synaptic (intrinsic) ion channels and receptors,
dendritic branching, spine density, and plasticity through genetic
and epigenetic mechanisms (Bosch & Hayashi, 2012; Mayford
et al., 2012; Zovkic, Guzman-Karlsson, & Sweatt, 2013). This sec-
tion summarizes the learning-related changes in the intrinsic firing
properties of neurons. Intrinsic excitability changes following
learning have been demonstrated in various brain regions and
are often accompanied by a reduction in the AHP and a decrease
in spike frequency adaptation, which leads to an increase in neuro-
nal firing. Finally, evidence that links aging-related deficits in
learning with failure to modulate intrinsic excitability is presented.

2.1. Early inroads

Early demonstrations of behaviorally induced intrinsic plastic-
ity were observed in both invertebrate and vertebrate preparations
(Alkon, 1979; Disterhoft, Coulter, & Alkon, 1986; Woody & Black-
Cleworth, 1973). For example, Woody and colleagues classically
conditioned cats to associate an auditory click with a glabella
tap, which normally evokes an eyeblink and nose-twitch response.
Following behavioral training, a reduction in rheobase (minimum
current required to elicit an AP) is observed for cells projecting
to the musculature involved in the learned blink-plus-twitch re-
sponse (Woody & Black-Cleworth, 1973). Likewise, early research
in the nudibranch Hermissenda crassicornis demonstrated that re-
peated pairings of light with rotation lead to reduced phototaxis
(Alkon,1974). Interestingly, following learning, excitability of the
Hermissenda type B photoreceptor cell was increased with a con-
comitant decrease in outward K+ currents (IA and a Ca2+-sensitive
K+ current; Alkon, 1979). This line of research was then extended
by observations of reduced AHPs in rabbit hippocampal neurons
following eyeblink conditioning (Disterhoft et al., 1986). These
landmark studies were followed by a range of studies using both
vertebrate and invertebrate preparations to investigate the role
of intrinsic plasticity in learning. Although there is an extensive lit-
erature on learning-induced intrinsic plasticity in invertebrates
(see Mozzachiodi & Byrne, 2010 for a review), for thesake of brev-
ity, the rest of this review will focus on vertebrate studies.

2.2. Learning-related intrinsic plasticity: vertebrate studies

Pavlovian conditioning is a powerful model system for studying
the neural correlates of associative learning in a wide range of inver-
tebrate and vertebrate preparations (Freeman & Steinmetz, 2011;
Hawkins, Kandel, & Bailey, 2006; Johansen, Cain, Ostroff, & LeDoux,
2011). Conditioning involves pairing the presentation of a neutral
conditioned stimulus (CS) with presentation of an unconditioned
stimulus (US), which elicits an unconditioned response (UR). As
learning occurs, when the CS is presented a conditioned response
(CR) emerges, which can be observed in the absence of the US. There
are two basic Pavlovian conditioning paradigms: delay and trace. In
delay conditioning, the CS turns on and remains on while the US is
presented. There is a ‘‘delay’’ between onset of the CS and onset of
the US, which can influence how quickly learning occurs (Thomp-
son, Moyer, & Disterhoft, 1996a). In trace conditioning, onset and
offset of the CS is followed by a stimulus-free trace interval prior
to onset of the US. This trace interval requires the animal to main-
tain a memory ‘‘trace’’ of the CS since it is no longer present during
the US. Interestingly, these variations in the temporal relationship
between the CS and US influence which brain structures/circuits
are ultimately required for learning to occur.

Eyeblink conditioning has been one of the most widely used
model systems to study basic mechanisms of learning and memory
(for review, see Christian & Thompson, 2003). While acquisition of
both delay and trace paradigms involves core brainstem–cerebellar
circuitry (Weiss & Disterhoft, 2011), acquisition of the trace para-
digm also requires higher brain regions, including hippocampus
(Moyer, Deyo, & Disterhoft, 1990; Solomon, Vander Schaaf, Thomp-
son, & Weisz, 1986). Numerous studies have demonstrated that
acquisition of eyeblink conditioning involves alterations to intrin-
sic neuronal excitability within these circuits. The first seminal re-
port was from a study by John Disterhoft and Dan Alkon, where
they demonstrated that the postburst AHP was significantly re-
duced in CA1 neuronsfollowing delay eyeblink conditioning (Dis-
terhoft et al., 1986). This represented an increase in the intrinsic
excitability since the AHP reductions were observed in the absence
of synaptic activity (Coulter et al., 1989). Similar changes have also
been observed in hippocampal CA1 and CA3 neurons following
trace eyeblink conditioning (de Jonge, Black, Deyo, & Disterhoft,
1990; Moyer, Thompson, & Disterhoft, 1996; Oh, McKay, Power,
& Disterhoft, 2009; Thompson, Moyer, & Disterhoft, 1996b). These
changes are typically evident as reductions in the sAHP as well as
spike frequency adaptation (see Fig. 2). Such changes are not only
learning-specific (i.e. they are not observed in pseudoconditioned
controls), butthey are also transient, suggesting that they may be
important for acquisition and consolidation of the learned re-
sponse (Moyer et al., 1996; Thompson et al., 1996b). Although
the vast majority of these in vitro studies have been performed
using hippocampal brain slices, comparable findings have been re-
ported within the cerebellum where the intrinsic excitability of
Purkinje neurons is increased for up to 1 month following training
(Schreurs, Gusev, Tomsic, Alkon, & Shi, 1998).

Pavlovian fear conditioning has also been extensively used to
study the neurobiology of emotional learning (LeDoux, 2000). Here
a neutral CS, such as a tone or an odor is paired with an aversive
US, such as a footshock. While delay and trace fear conditioning
paradigms require the amygdala for acquisition and expression of
the conditioned fear memory (Kwapis, Jarome, Schiff, & Helmstet-
ter, 2011; for review see Davis, 2004; LeDoux, 2000; Otto, Cousens,
& Herzog, 2000), trace fear conditioning also requires other higher
brain regions, including hippocampus (Bangasser, Waxler, Santollo,
& Shors, 2006; Kesner, Hunsaker, & Gilbert, 2005; Quinn, Oommen,
Morrison, & Fanselow,2002; Suh, Rivest, Nakashiba, Tominaga, &
Tonegawa, 2011). As with eyeblink studies, trace fear conditioning
also enhances the intrinsic excitability of CA1 pyramidal neurons
(Kaczorowski & Disterhoft, 2009; McKay, Matthews, Oliveira, &
Disterhoft, 2009; Song et al., 2012). These changes in excitability
are evident as reductions in the sAHP and reduced spike frequency
adaptation. Furthermore, following conditioning the behavioral
performance (percent freezing) is significantly correlated with
the size of the postburst AHP in conditioned rats, but not in
pseudoconditioned rats, suggesting the enhancement in intrinsic
excitability is learning-specific (Song et al., 2012).

Intrinsic plasticity is also important for extinction, which is a
form of learning in which repeated presentations of the CS (in
the absence of the US) leads to a decrease in the CR. Extinction of
conditioned fear requires a variety of structures, including the
amygdala, hippocampus, and medial prefrontal cortex (mPFC, Sier-
ra-Mercado, Padilla-Coreano, & Quirk, 2011). Within mPFC, an in-
crease in infralimbic cortex (IL) activity is critical for inhibiting
conditioned fear responses and facilitating extinction memory
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(Burgos-Robles, Vidal-Gonzalez, Santini, & Quirk, 2007; Chang &
Maren, 2011; Milad & Quirk, 2002; Milad, Vidal-Gonzalez, & Quirk,
2004; Vidal-Gonzalez, Vidal-Gonzalez, Rauch, & Quirk, 2006). Re-
cent in vitro studies suggest that fear conditioning decreases the
intrinsic excitability of IL neurons whereas extinction reverses this
effect (Santini et al., 2008). Although the circuitry is more compli-
cated, it is clear that acquisition and extinction can modulate the
intrinsic excitability of mPFC neurons in a bidirectional manner.

Synaptic plasticity within the lateral amygdala (LA) is critical
for fear learning (McKernan & Shinnick-Gallagher, 1997; Rogan,
Staubli, & LeDoux, 1997; Rumpel, LeDoux, Zador, & Malinow,
2005). Following fear conditioning, LA neurons are not only more
responsive (fire more action potentials) to the CS (Maren, 2000;
Quirk, Armony, & LeDoux, 1997; Quirk, Repa, & LeDoux, 1995;
Repa et al., 2001), but they also discharge more synchronously
(Pare & Collins, 2000). These changes may involve both synaptic
and intrinsic plasticity. Rosenkranz and Grace (2002) investi-
gated the effect of olfactory fear conditioning on LA neurons in
anesthetized rats and found that odor-elicited post synaptic
potentials were significantly enhanced. Furthermore, an
enhancement of intrinsic excitability was also observed – higher
input resistance, reduced rheobase, and a shortening of the rise
and decay of membrane time constants (Rosenkranz & Grace,
2002). Thus, these studies suggest that both synaptic and intrin-
sic plasticity accompany acquisition of fear conditioning in LA
neurons.
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Despite the early evidence for the presence of intrinsic plasticity
within the LA, learning-related intrinsic plasticity in LA has re-
ceived little attention. A recent study has examined the time
course of intrinsic plasticity following fear conditioning in LA neu-
rons using in vitro recordings (Sehgal, Girgis, & Moyer, 2012). Fear
conditioning leads to a reduction in the sAHP and spike frequency
adaptation 24 h following conditioning. However, when tested
immediately post-conditioning, the sAHP was reduced but spike-
frequency adaptation remained unchanged, suggesting a possible
dissociation between the learning-related AHP reduction and
spike-frequency adaptation with learning (Sehgal et al., 2012).
Such a dissociation between the time course of learning-related
changes in the sAHP and spike frequency adaptation is consistent
with other studies (e.g. Motanis, Maroun, & Barkai, 2012; Moyer
et al., 1996) indicating the sAHP may regulate spike frequency
adaptation in concert with other ionic conductances.

In addition to LA, the basolateral nucleus of amygdala (BLA) is
also critical for fear memory retrieval (Anglada-Figueroa & Quirk,
2005). Interestingly, the intrinsic excitability of BLA neurons was
reduced following olfactory fear conditioning (Motanis et al.,
2012). This effect was evident as an enhancement in spike fre-
quency adaptation, but was independent of sAHP modulations.
This raises the interesting possibility that within the amygdala
there appears to exist sub-region specific, differential modulation
of intrinsic neuronal excitability.

Of course, learning-related modulation of intrinsic excitability
is not limited to classical conditioning paradigms, as operant con-
ditioning can also modulate intrinsic excitability. A series of stud-
ies from Edi Barkai’s group utilized an operant olfactory
discrimination paradigm, which required an animal to differentiate
a pair of odors in order to receive a reward. Rats acquire this type of
learning in a few days, and learning to differentiate one pair of
odors facilitates learning to differentiate other pairs of odors – a
phenomenon called ‘‘rule learning’’ (Saar, Grossman, & Barkai,
1998, 1999). Rule learning enhances intrinsic excitability in the
piriform cortex (Saar et al., 1998), BLA (Motanis et al., 2012) and
hippocampus (Zelcer et al., 2006). In these brain regions, the neu-
rons display transient reductions in both the sAHP and spike-fre-
quency adaptation after learning.

To summarize, intrinsic plasticity in the vertebrate brain is
learning-specific, transient, and widespread – meaning it is ob-
served in many different brain regions. In some cases these intrin-
sic changes are known to last anywhere from hours to days, or
even weeks (Brons & Woody, 1980; Moyer et al., 1996; Saar
et al., 1998; Schreurs et al., 1998). Given that these changes are
correlated with learning (Song et al., 2012), such plasticity is an
important predictor of learning-induced behavioral plasticity.

2.3. Aging and aberrant intrinsic excitability

Aging is associated with reduced cognitive ability. Furthermore,
cognitive decline in the elderly can be viewed along a continuum
and can be present even in the absence of neurological disorders
like Alzheimer’s disease (AD). Moreover, the effect of normal aging
(in absence of disorders) varies between individuals – some elderly
individuals suffer more pronounced cognitive deficits whereas oth-
ers are relatively unimpaired (Deary et al., 2009). Normal aging
leads to a decline in many brain functions, but the two brain re-
gions consistently implicated in these functional alterations are
the medial temporal lobe (MTL) and the prefrontal cortex (PFC;
Burke & Barnes, 2006; also reviewed later).

Hippocampal involvement in a variety of learning and memory
paradigms is well documented (for a review, see Squire, 2004).
Although aged rodents typically perform worse than young ro-
dents on many hippocampus-dependent tasks, aged animals can
be divided into aged impaired (AI) or aged unimpaired (AU) based
on their performance (Gallagher, Burwell, & Burchinal, 1993). Het-
erogeneity in acquisition of Morris water maze (MWM) in aged ro-
dents is associated with differences in CA1 neuronal excitability.
The AI rats display greater sAHP and spike frequency adaptation
relative to young and AU rats, and the sAHP amplitude was corre-
lated with behavioral performance (Tombaugh, Rowe, & Rose,
2005). Interestingly, in this study the electrophysiological record-
ings were performed weeks (�2–4 weeks) after MWM training
indicating these changes may not be learning-related and may re-
flect basal differences in CA1 excitability. Thus, it is possible that
pre-learning differences in the intrinsic excitability of neurons con-
tribute to aging-related cognitive decline and could explain the
heterogeneity observed in cognitive performance during the aging
process. Alternatively, it is also possible that intrinsic excitability
changes following MWM last longer than those seen following
acquisition of trace eyeblink conditioning.

Normal aging also leads to pronounced deficits in acquisition of
hippocampus-dependent trace eyeblink and fear conditioning
tasks. These deficits are observed in aged rodents (Kishimoto, Su-
zuki, Kawahara, & Kirino, 2001; Knuttinen, Gamelli, Weiss, Power,
& Disterhoft, 2001; Moyer & Brown, 2006), rabbits (Deyo, Straube,
& Disterhoft, 1989; Moyer, Power, Thompson, & Disterhoft, 2000;
Solomon & Groccia-Ellison, 1996; Thompson et al., 1996a), and hu-
mans (Finkbiner & Woodruff-Pak, 1991). In addition to forming
associations between the CS and the US, animals also form associ-
ations between the conditioning context and the US. Such contex-
tual fear associations require hippocampal function (Kim &
Fanselow, 1992) and are impaired in aged rodents (Kaczorowski
& Disterhoft, 2009; Moyer & Brown, 2006). Rodents, especially
aging rodents, display heterogeneity in the acquisition of trace
and context conditioning. Animals (young, middle-aged, or aged)
that acquire context or trace conditioning have enhanced CA1
intrinsic excitability relative to age-matched control and slow
learning animals (Kaczorowski & Disterhoft, 2009; Moyer et al.,
2000; Song et al., 2012). These data indicate that reduced intrinsic
excitability (pre- and post-learning) may be an important predictor
of cognitive decline. It is interesting to note that animals that learn
well have significantly smaller AHPs than animals that learn
poorly. This is seen not only in adult animals but also aged animals
where the AHP is significantly larger. This bidirectional modulation
of AHP suggests that it is an important intrinsic mechanism influ-
encing behavioral plasticity.

PFC function is also impaired during normal aging. The PFC is
critical for working memory and executive function (Funahashi,
Bruce, & Goldman-Rakic, 1993; Mair, Burk, & Porter, 1998). Impair-
ments in learning working memory tasks, such as the Delayed non-
matching-to-sample (DNMS) are observed across species with
aging (Dunnett, Evenden, & Iversen, 1988; Lyons-Warren, Lillie, &
Hershey, 2004; Moss, Killiany, Lai, Rosene, & Herndon, 1997; Moss,
Rosene, & Peters, 1988). In primates, working memory tasks are
dependent upon alterations in AP firing rates in dorsolateral PFC
(Goldman-Rakic, 1995) and normal aging results in changes in
the intrinsic properties of primate dorsolateral PFC neurons. Spe-
cifically, aging increases input resistance, decreases AP amplitude
and fall time, and increases AP firing rate in layer II/III dorsolateral
PFC neurons (Chang & Maren, 2011). Furthermore, in aged mon-
keys, performance on DNMS has a U-shaped quadratic relationship
with the firing rate of layer II/III dorsolateral PFC neurons, where
either low or very high firing rates predict poor performance
(Chang, Rosene, Killiany, Mangiamele, & Luebke, 2005). Interest-
ingly, modulation of excitability of layer III dorsolateral PFC neu-
rons by inhibiting cAMP signaling, HCN channels, or KCNQ
channels restores persistent firing during the delay period and
leads to improved performance of DNMS task (Wang et al.,
2011). These data indicate that sub-region-specific alterations
in intrinsic properties may underlie learning deficits, and that
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modulation of excitability can ameliorate aging-related cognitive
decline.

PFC sub-regions are also critical for cognitive flexibility (Oualian
& Gisquet-Verrier, 2010). One example of cognitive flexibility is
behavioral extinction, which is the learned inhibition of a behav-
ioral response as a result of a change in stimulus contingencies
(for a review of extinction, see Milad & Quirk, 2012). As previously
mentioned in Section 2.1, PFC (particularly IL) is critical for extinc-
tion of a conditioned fear response. Moyer and colleagues studied
the effects of normal aging on extinction of trace fear conditioning
(Kaczorowski, Davis, & Moyer, 2012). They found that both middle-
aged and aged rats were significantly impaired, as evidenced by
continued freezing following the CS (see Fig.3A). The emergence
of these aging-related extinction deficits paralleled a significant
decrease in the intrinsic excitability in IL regular spiking neurons
(see Fig. 3B), and an increase in the intrinsic excitability of PL (pre-
limbic mPFC) burst spiking neurons. The association between
extinction deficits and low intrinsic excitability in IL neurons is sig-
nificant, because similar findings have been reported in human
studies. In humans, extinction deficits are thought to underlie a
variety of disorders, including posttraumatic stress disorders
(PTSD). PTSD patients have decreased metabolism in ventromedial
PFC (vmPFC) as compared to control subjects (Bremner, Narayan,
et al., 1999; Bremner, Staib, et al., 1999; Shin et al., 2005). Hence,
modulation of intrinsic excitability within IL could strengthen
extinction learningin aging populations and also potentially bene-
fit patients at risk for or suffering from PTSD.

In order to understand how neuronal activity is altered during
normal aging, it is important to identify the underlying ionic con-
ductances and relate these not only to changes in neuronal activity
but also to changes in cognitive function. A number of studies have
indicated that aberrant function of potassium channels as well as
intracellular calcium homeostasis significantly contributes to
aging-related cognitive decline. Given the wealth of data suggest-
ing aging-related deficits in calcium regulation (for reviews see
Disterhoft, Thompson, Moyer, & Mogul, 1996; Thibault, Gant, &
Landfield, 2007; Toescu & Verkhratsky, 2007), it is not surprising
that slow AHP (sAHP), largely mediated by a Ca2+-dependent K+

current (Alger & Nicoll, 1980), is enhanced in aging animals (Kumar
& Foster, 2002; Landfield & Pitler, 1984; Moyer & Disterhoft, 1994;
Moyer, Thompson, Black, & Disterhoft, 1992). In aged animals, an
enhanced sIAHP is correlated with an enhanced sAHP and impaired
learning ability (Power, Wu, Sametsky, Oh, & Disterhoft, 2002).
Other K+ channels that contribute to the AHP in hippocampal
neurons include K+ channels containing auxiliary Kvb1.1 subunit
(Giese et al., 1998) and small-conductance Ca2+-activated K+
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channel type 2 (SK2 and SK3; see Stocker, 2004 for review). Aged
mice that lack Kvb1.1 subunits have increased hippocampal neuro-
nal excitability, exhibit a smaller AHP, lower LTP induction thresh-
old, and improved spatial learning relative to age-matched controls
(Murphy et al., 2004). Elevated expression of SK3 in the hippocam-
pus is also correlated with impairment of LTP, and trace fear con-
ditioning in aged mice (Blank, Nijholt, Kye, Radulovic, & Spiess,
2003). Transgenic mice that overexpress SK2 channels also demon-
strated a higher LTP induction threshold and impairment in learn-
ing both hippocampus- and amygdala-dependent tasks (Hammond
et al., 2006). Thus, aberrant intrinsic plasticity may emerge during
normal aging, as a result of alterations in the numbers, distribu-
tions, or modulation of K+ channels that underlie the AHP and im-
pact neuronal excitability during learning.
3. Implications of intrinsic plasticity on learning

3.1. Does intrinsic plasticity encode memory?

As described above, changes in neuronal excitability are learn-
ing-specific since they are observed in animals that learned, but
not in pseudoconditioned controls or animals that failed to learn
(Moyer et al., 1996; Oh, Kuo, Wu, Sametsky, & Disterhoft, 2003;
Song et al., 2012). These changes are not restricted to adult ani-
mals, as learning-related AHP reductions are also observed in mid-
dle-aged and aged animals (Kaczorowski & Disterhoft, 2009;
Moyer et al., 2000). While these data suggest that intrinsic plastic-
ity underlies memory formation, a mnemonic role for intrinsic
plasticity as a mechanism for maintaining a long-term memory
seems unlikely for two reasons. First, these changes are transient
(lasting only a few days) whereas behavioral expression of the
memory can last for weeks, months, or even years. Within the hip-
pocampus,enhanced intrinsic excitability of CA1 neurons is no
longer evident 7 days following acquisition of trace eyeblink condi-
tioning (see Fig. 2), even though behavioral expression of the mem-
ory is evident for at least 6 months (Moyer et al., 1996). It is worth
mentioning though that in some cases learning-related intrinsic
plasticity can be persistent and hence, may very well underlie cer-
tain long-term memories (Brons & Woody, 1980; Schreurs et al.,
1998). However, the majority of studies that have looked at the
time course of learning-induced intrinsic plasticity have found that
these changes are short-lived (Motanis et al., 2012; Moyer et al.,
1996; Saar et al., 1998; Thompson et al., 1996b; Zelcer et al.,
2006). Second, global intrinsic plasticity is not synapse-specific,
which limits its information storage capacity. It is unlikely that
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such plasticity would underlie a memory trace without quickly sat-
urating the capacity for new memory formation (Moyer et al.,
1996; Zhang & Linden, 2003). Thus, although intrinsic plasticity
is learning-specific, its transient and global nature suggests that
it is not likely to code for the memory itself.

An alternate explanation suggests that within the hippocampus
the time course of enhanced intrinsic excitability reflects a period
of time when these memories are undergoing memory consolida-
tion (Moyer et al., 1996; Thompson et al., 1996b). Over time, as
the memory trace is transferred to higher cortical structures
(Kim, Clark, & Thompson, 1995; Nadel & Moscovitch, 1997), tran-
sient intrinsic plasticity could facilitate the consolidation of mem-
ory from hippocampus to higher cortical structures, such as
prefrontal cortex (Wierzynski, Lubenov, Gu, & Siapas, 2009). Such
a system-level consolidation process requires reactivation and re-
play of memories (Girardeau, Benchenane, Wiener, Buzsaki, & Zug-
aro, 2009; Ji & Wilson,2007), and enhanced excitability could
facilitate these processes by lowering neuronal spike firing
requirements. Thus, transient enhancement of excitability may
facilitate processes that allow successful memory formation with-
out directly encoding the memory (discussed further in Sections
3.2 and 3.3).

In order to demonstrate a clear functional role for intrinsic plas-
ticity, it is important to determine the necessity and sufficiency of
intrinsic plasticity. This is still poorly understood. It is clear that in
order to advance our understanding of exactly how intrinsic plas-
ticity contributes to cognitive functions, including learning and
memory, it is important to understand how intrinsic plasticity
influences synaptic and behavioral changes. That synaptic and
intrinsic plasticity also share similar signaling pathways presents
unique complications to understanding how these processes inter-
act to influence behavioral plasticity.
3.2. Interactions between synaptic and intrinsic plasticity: chicken or
the egg?

Canadian psychologist Donald Hebb postulated that changes in
connection strength could be the cellular mechanism for learning
and memory (Hebb, 1949). Since then, synaptic plasticity has been
demonstrated in vitro and in vivo in a variety of brain regions (for
review, see Lynch, 2004). Numerous experiments not only suggest
that synaptic plasticity shares some of the same cellular and
molecular pathways as does learning, but they also suggest that
blocking synaptic plasticity impairs learning (e.g., Gruart & Delgad-
o-Garcia, 2007; Morris, Anderson, Lynch, & Baudry, 1986; Whit-
lock, Heynen, Shuler, & Bear, 2006).

Synaptic plasticity is often accompanied by intrinsic plasticity.
Stimulation protocols that induce synaptic plasticity also modulate
intrinsic excitability. For example, LTP induction in hippocampal
CA1 neurons leads to ES potentiation (Bliss & Lomo, 1973; Daoudal
et al., 2002), increases local dendritic excitability, and facilitates
bAPs (Frick et al., 2004). These changes are input specific, and are
NMDA receptor-dependent (Daoudal et al., 2002; Frick et al.,
2004). In addition, learning can facilitate synaptic transmission
as well as intrinsic excitability in hippocampus and piriform cortex
(Moyer et al., 1996; Power, Thompson, Moyer, & Disterhoft, 1997;
Saar, Grossman, & Barkai, 2002; Saar et al., 1998). Hence, synaptic
and intrinsic plasticity can be induced by the same stimuli (e.g.,
learning or in vitro stimulation). Synaptic and intrinsic plasticity
are also mediated by the same intracellular signaling pathways.
For example, both types of plasticity depend on the activation of
NMDARs and some intracellular cascades such as PKA, PKC, and
CAMKII (Daoudal & Debanne, 2003). However, it is unclear which
form of plasticity comes first, whether learning-related intrinsic
plasticity facilitates learning-related synaptic plasticity, or
whether both are induced in parallel. This remains an open ques-
tion, which will warrant additional research.

Several lines of evidence suggest that intrinsic plasticity can
facilitate synaptic plasticity. Drugs or other treatments that reduce
the AHP (and thus enhance intrinsic excitability) also facilitate the
induction of LTP (Cohen & Abraham, 1996; Cohen et al., 1999; Sah
& Bekkers, 1996). Such facilitation is also evident in absence of any
changes in baseline synaptic transmission, indicating they do not
result from better synaptic signal propagation alone. Furthermore,
enhancement of synaptic plasticity can also be achieved by
increasing intrinsic excitability via downregulating transient A-
type K+ channels (Chen et al., 2006; Hoffman & Johnston, 1998)
or blocking of SK2 channels with BDNF or apamin (Kramar et al.,
2004). Finally, recent studies suggest thatintrinsic plasticity can
be induced independent of synaptic plasticity, indicating that
intrinsic plasticity is generated before synaptic plasticity. For
example, Barkai and colleagues (Cohen-Matsliah, Motanis, Rosenb-
lum, & Barkai, 2010) demonstrated that a high frequency synaptic
stimulation (e.g., 20 stimuli at 50 Hz) although not sufficient to
induce LTP at 1 h following stimulation, was capable of reducing
the postburst AHP in CA1 pyramidal neurons 3–6 h later (see
Fig. 4A). Thus, intrinsic plasticity, particularly AHP changes, can
facilitate synaptic plasticity and may be a metaplasticity
mechanism.

That synaptic plasticity occurs after or in the presence of intrin-
sic plasticity (Saar, Reuveni, & Barkai, 2012; Saar et al., 1998, 1999,
2002; Song et al., 2012) is consistent with the hypothesis that
intrinsic plasticity could lead to synaptic plasticity. Although a
relationship between intrinsic and synaptic plasticity has been
well documented, a significant correlation between the two forms
of plasticity following behavioral training was not reported until
recently (Song et al., 2012). Moyer and colleagues examined the ef-
fect of trace fear conditioning on both intrinsic excitability (intra-
cellular recordings) and synaptic plasticity (field recordings) of
hippocampal CA1 neurons from the same animals. Both intrinsic
excitability (size of AHP) and synaptic plasticity (percent LTP) were
significantly correlated with behavioralperformance (percent time
spent freezing). Interestingly, intrinsic excitability and synaptic
plasticity were significantly correlated with each other in good
learners (Fig. 4B). Thus, the data suggests that synaptic stimulation
can lead to long term changes in intrinsic excitability (see Fig. 4A)
and learning-related changes in intrinsic plasticity predict the
strength of subsequent LTP induction (see Fig. 4B). It is possible
that synaptic stimulation during learning results in intrinsic plas-
ticity, and the magnitude of this plasticity predicts future synaptic
plasticity, however, this still remains to be proven.

3.3. Metaplasticity: change begets change

Consistent with a role for intrinsic plasticity in memory consol-
idation, learning-specific changes in intrinsic neuronal excitability
can also serve a metaplasticity function. Metaplasticity refers to
the higher-order plasticity that affects synaptic or intrinsic plastic-
ity. Plasticity of intrinsic excitability is one such mechanism that
could underlie metaplasticity (see Abraham, 2008, for discussion
of other mechanisms implicated in metaplasticity induction).

The duration of learning-induced enhancements of intrinsic
excitability also overlaps with a time period of enhanced learning
(Saar et al., 1998; Zelcer et al., 2006). Using an olfactory discrimi-
nation paradigm where water-deprived rats learn to choose a par-
ticular odor for a water reward, discrimination between the first
odor pair takes �7 days whereas learning to discriminate subse-
quent pairs occurs more rapidly (�1 day). This phenomenon is
called ‘‘rule learning’’. Following acquisition of rule learning, intrin-
sic excitability of piriform cortical neurons is enhanced for up to
3 days and returns to baseline levels by 5 days. Remarkably, if
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training is suspended after acquisition of rule learning, rats display
better discrimination for 1–2 additional days, which corresponds
to the aforementioned period of enhanced excitability (Saar et al.,
1998). Thus, the period of enhanced excitability of piriform cortex
neurons matches the period during which rats display enhanced
learning abilities.

Learning-induced intrinsic plasticity within a specific structure
can also facilitate the acquisition of a different learning task depen-
dent on that structure. Olfactory learning results in transient
enhancement of hippocampal intrinsic excitability. During this
period of enhanced neuronal excitability, acquisition of the hippo-
campus-dependent Morris water maze task is facilitated (Zelcer
et al., 2006). Thus, intrinsic plasticity may be a mechanism that
facilitates acquisition of new learning. It should be noted, however,
that learning-related enhancement of learning has not been uni-
versally observed in all reported studies. For example, simulta-
neous but not consecutive training on two hippocampus-
dependent tasks, trace eyeblink conditioning and MWM, facilitates
acquisition of the trace eyeblink but not the water maze task (Kuo,
Lee, & Disterhoft, 2006). These data indicate that learning-induced
facilitation of learning may depend on additional factors, including
the nature and timing of the learning paradigms. Establishing the
contingencies that allow for learning-induced facilitation of learning
should be an exciting new avenue for memory researchers.

If modulation of intrinsic excitability affects learning, might it
also explain individual differences or heterogeneity in learning
ability? Or is the ability to modulate intrinsic excitability an index
of intelligence? On more than one occasion, rodents classified as
‘‘fast-learners’’ or ‘‘good learners’’ have been demonstrated to have
greater learning-induced enhancement of intrinsic excitability (Co-
hen-Matsliah, Rosenblum, & Barkai, 2009; Song et al., 2012). For
example, rats display heterogeneity in their ability to discriminate
between odors in a simple maze (Cohen-Matsliah et al., 2009).
Intrinsic excitability of piriform cortex neurons in fast performers
(i.e., rats that display maximum efficacy right away on exposure
to the maze) is greater relative to those from control rats. In con-
trast, piriform cortex neurons from slow performers are less excit-
able than control neurons. These differences are observed early on
(12 h following maze learning) and subside as the performance of
slow and fast learners converge. Furthermore, these performance
differences are maintained on a complex olfactory discrimination
maze (Cohen-Matsliah et al., 2009). Thus, fast performers appear
to modulate intrinsic excitability sooner (12 h) than slow perform-
ers (3 days). Similarly, following trace fear conditioning, CA1 neu-
rons from rats classified as good learners had higher intrinsic
excitability than those from poor learners or pseudoconditioned
rats (Song et al., 2012). These data indicate that individual differ-
ences in learning ability could reflect a differential capacity to
modulate intrinsic neuronal excitability.

If intrinsic excitability regulates the strength of learning, then it
stands to reason that interventions capable of reducing the post-
burst AHP or otherwise enhancing intrinsic excitability should en-
hance learning and vice versa (also see Disterhoft & Oh, 2006).
Indeed, early studies demonstrated that nimodipine, an L-type
Ca2+ channel blocker, enhanced hippocampal intrinsic excitability
by reducing the postburst AHP (Moyer et al., 1992), and facilitated
the acquisition of trace eye-blink conditioning in aging rabbits
(Deyo et al., 1989). More recently, administration of the SK2 chan-
nel agonist NS309 was shown to not only increase the size of the
medium postburst AHP, but also impair the ability of rats to learn
trace eyeblink conditioning (McKay et al., 2012), suggesting that
direct enhancement of the AHP can negatively impact cognitive
function. In addition, b-adrenergic receptor antagonists that mod-
ulate the AHP in LA neurons (Faber & Sah, 2002) block acquisition
as well as reconsolidation of fear conditioning (Bush, Caparosa,
Gekker, & Ledoux, 2010; Debiec & Ledoux, 2004; Muravieva &
Alberini, 2010). Modulation of CREB (cyclic AMP response ele-
ment-binding protein) expression within LA enhances both intrin-
sic excitability (Zhou et al., 2009) and fear learning (Han et al.,
2007). Furthermore, enhanced noradrenergic and cholinergic
transmission decreases the sAHP, increases spike firing, and en-
hances mPFC-dependent learning (Mueller, Porter, & Quirk, 2008;
Santini & Porter, 2010; Santini, Sepulveda-Orengo, & Porter,
2012). Taken together, these studies support a significant role for
intrinsic plasticity in modulation of cognitive function.

Intrinsic plasticity could also be responsible for priming effects
observed in various memory paradigms. For example, a single
training trial may not [on its own] be sufficient to elicit a memory
of the trial, however a subsequent trial may then allow for memory
formation in a time-dependent manner. While a single weak fear
conditioning trial does not result in long-term fear memory, a sec-
ond conditioning trial within a circumscribed window of time al-
lows for long-term fear memory. This priming effect is
dependent on PKA (protein kinase A) signaling within the amyg-
dala following the initial trial (Parsons & Davis, 2012). As PKA
signaling can also underlie learning-induced intrinsic plasticity
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(Oh et al., 2009), it is likely that increased intrinsic excitability fol-
lowing the first trial can underlie facilitated acquisition following
the second trial. Similar results have been observed, for example,
in Aplysia for sensitization of a defensive reflex (Philips, Tzvetkova,
& Carew, 2007). Thus, mechanisms that modulate intrinsic plastic-
ity could also regulate efficacy of learning in spaced training
paradigms.

Further support for intrinsic plasticity as a metaplasticity
mechanism comes from observations that certain environmental
conditions enhance learning ability as well as alter intrinsic
excitability. Indeed, environmental enrichment is not only capa-
ble of enhancing learning (Greenough, Fulcher, Yuwiler, & Geller,
1970), but it also enhances intrinsic excitability and E-S potenti-
ation in hippocampal CA1 neurons (Malik & Chattarji, 2012).
Thus, factors such as environmental conditions, behavioral his-
tory, as well as pharmacological manipulations that influence
learning also impact intrinsic excitability and vice versa, indicat-
ing that intrinsic plasticity is an important modulator of memory
acquisition and strength.
4. New horizons

4.1. Engram: unraveling the enigma

A fundamental question in the search for the engram is ‘‘How
are neurons selected for memory formation?’’ For example,
although about 70% of LA neurons receive sensory inputs (Roman-
ski, Clugnet, Bordi, & LeDoux, 1993), only �20–30% of LA neurons
display learning-related synaptic plasticity that is critical for fear
conditioning memory (Rumpel et al., 2005). Therefore, only a small
proportion of the neurons within LA, a structure critical for fear
memory, are encoding the memory. How are these neurons that
are incorporated into the memory trace different from the other
neurons that are left out?

It is possible that as per Lashley’s law of equipotentiality (Lash-
ley, 1929), all neurons within a structure are equally capable of
being incorporated into the memory trace. This supports the prob-
abilistic view of memory formation where all neurons within a
structure receive information necessary for memory encoding;
however only a few end up coding for the memory. The alternate
view supports the deterministic nature of the memory trace and
implies that the neurons incorporated into a memory trace are pre-
determined – perhaps on the basis of their synaptic inputs (Squire,
1987).

In recent years, there has been considerable evidence to support
the probabilistic view of memory formation (Han et al., 2007; Won
& Silva, 2008). In a notable study, a viral vector was used to inject a
wildtype or dominant negative form of CREB into either transgenic
CREB-deficient or wildtype mice (Han et al., 2007). These viral
transfections affected �20% of LA neurons. Neurons with higher
CREB levels were more likely to be incorporated into the memory
trace than the surrounding, CREB-deficient neurons. Furthermore,
selective ablation of the CREB overexpressing neurons, which were
preferentially incorporated into the memory trace, abolished the
fear memory (Han et al., 2009). These data suggest that LA neurons
are equally likely to be incorporated into the memory trace, but
certain factors bias neurons to be preferentially recruited.

How does CREB upregulation bias memory allocation? It is well
established that CREB expression can modulate neuronal excitabil-
ity (Benito & Barco, 2010). Upregulation of CREB expression within
a subset of LA neurons enhances their intrinsic excitability and
leads to greater fear conditioning-related LTP (Zhou et al., 2009).
Thus, it is likely that enhanced excitability facilitates synaptic plas-
ticity, which could bias the allocation of new memories to a subset
of neurons. Further support for the probabilistic nature of the
memory trace and the role of intrinsic excitability in biasing this
trace come from a study manipulating intrinsic excitability of hip-
pocampal CA1 neurons during spatial exploration (Lee, Lin, & Lee,
2012). In this study, whole-cell patch clamp recordings were ob-
tained from CA1 neurons while the animals explored a novel envi-
ronment. Hippocampal CA1 neurons represent spatial information
by environment-specific spiking activity such that these place cells
fire in a particular place in the animal’s environment (O’Keefe and
Dostrovsky, 1971). Remarkably, increasing the excitability of a
neuron by injecting a small, depolarizing current injection turns
a previously silent cell into a place cell. In contrast, reducing the
excitability by injecting a small hyperpolarizing current changed
a place cell to a silent cell (Lee et al., 2012). These data indicate that
even silent CA1 neurons receive spatial information and that this
information can be uncovered by enhancement of its intrinsic
excitability.

If intrinsic excitability can bias the recruitment of neurons to
become part of a memory circuit, then what are the implications
of learning-related intrinsic plasticity for memory allocation? Fear
conditioning enhances intrinsic excitability within a subset of LA
neurons (Sehgal et al., 2012). Thus, learning-related intrinsic plas-
ticity can be restricted to a small subset of neurons within a struc-
ture. It is likely that these neurons displaying enhanced excitability
are also especially likely to encode a subsequent memory trace.
Keeping in mind that learning-related intrinsic plasticity is tran-
sient; such learning-related bias in memory allocation should also
be transient. Interestingly, the levels of CREB, especially the phos-
phorylated active form of CREB, are dependent upon the previous
activity of a neuron (Sheng, Thompson, & Greenberg, 1991). The
activity-dependent modulation of CREB levels within neurons
could determine the intrinsic excitability, and thus the probability
with which these neurons are incorporated into the trace. This
would mean neurons that were previously active because they
were a part of the memory trace are more likely to be a part of
the memory trace again.

These and many such hypotheses are as yet untested. The use of
transgenic rodent models as well as optogenetic manipulations
would greatly facilitate our understanding of these fundamental
questions in neuroscience. These new tools in conjunction with
analyses of intrinsic and synaptic plasticity in single cell studies
can greatly advance our understanding of not only how a memory
trace is formed but also how it is updated or even degraded by
experience or age.

4.2. Clinical perspective: from mice to men

Understanding how memories are formed and modulated is of
significant clinical relevance. According to the US census bureau,
middle-aged and aged individuals will constitute 45% of the US
population by the year 2050, drastically increasing the socio-eco-
nomic impact of aging-related cognitive decline (US Census Bu-
reau, 2004). Such aging-related cognitive decline is well-
documented for hippocampus- and PFC-dependent tasks (Burke
& Barnes, 2006). Furthermore, these impairments can be rescued
by manipulating intrinsic excitability for hippocampal (Deyo
et al., 1989; Disterhoft & Oh, 2006; Moyer et al., 1992) as well as
PFC-dependent learning (Wang et al., 2011). In addition to normal
aging (Chang et al., 2005; Kaczorowski et al., 2012; Moyer et al.,
1992, 2000), rodent models of Alzheimer’s disease also display
aberrant intrinsic plasticity (Kaczorowski, Sametsky, Shah, Vassar,
& Disterhoft, 2011). Modulation of intrinsic excitability could be an
important factor in the search for neurobiological approaches to
mitigate or prevent the onset of aging-related cognitive impair-
ments and even rescue those deficits after they emerge.

Associative memories can predict aversive or appetitive stimuli.
In some cases, such as PTSD, these memories are maladaptive and
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can lead to reoccurrence of the traumatic events (Mahan & Ressler,
2012). Such an abnormal fear response may arise as a result of
metaplasticity, where some prior events lead to alterations in the
intrinsic excitability of neurons within the fear circuit (Rosenkranz,
Venheim, & Padival, 2010). In other cases, associative memories
can provoke drug seeking as a result of presentation of cues previ-
ously associated with drug taking (Childress, McLellan, & O’Brien,
1986). By understanding the interplay between intrinsic excitabil-
ity and behavioral plasticity, it may be possible to develop neuro-
biologically based treatment strategies that when combined with
exposure therapy causes extinction of these abnormal associations
(Myers, Carlezon, & Davis, 2011). Strengthening this extinction
learning by enhancing intrinsic excitability can provide treatment
for pathological forms of memory.

Finally, the old saying, an ounce of prevention is worth a pound of
cure is certainly relevant here. Understanding the fundamental
mechanisms that underlie memory formation may influence our
ability to maximize the beneficial effects of experience-dependent
plasticity and facilitate development of treatment strategies aimed
at improving our quality of life.
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